Conformational dynamics of the molecular chaperone Hsp90.

نویسندگان

  • Kristin A Krukenberg
  • Timothy O Street
  • Laura A Lavery
  • David A Agard
چکیده

The ubiquitous molecular chaperone Hsp90 makes up 1-2% of cytosolic proteins and is required for viability in eukaryotes. Hsp90 affects the folding and activation of a wide variety of substrate proteins including many involved in signaling and regulatory processes. Some of these substrates are implicated in cancer and other diseases, making Hsp90 an attractive drug target. Structural analyses have shown that Hsp90 is a highly dynamic and flexible molecule that can adopt a wide variety of structurally distinct states. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis only shift the equilibria between a pre-existing set of conformational states. For bacterial, yeast and human Hsp90, there is a conserved three-state (apo-ATP-ADP) conformational cycle; however; the equilibria between states are species specific. In eukaryotes, cytosolic co-chaperones regulate the in vivo dynamic behavior of Hsp90 by shifting conformational equilibria and affecting the kinetics of structural changes and ATP hydrolysis. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90, as well as the roles that nucleotide, co-chaperones, post-translational modification and substrates play. This view of Hsp90's conformational dynamics was enabled by the use of multiple complementary structural methods including, crystallography, small-angle X-ray scattering (SAXS), electron microscopy, Förster resonance energy transfer (FRET) and NMR. Finally, we discuss the effects of Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution.

Molecular switching and ligand-based modulation of the 90-kDa heat-shock protein (Hsp90) chaperone activity may ultimately facilitate conformational coupling to the ATPase cycle along with activation and recruitment of the broad range of client proteins. We present an atomic resolution analysis of the Hsp90 N-terminal domain (NTD) binding energy landscape by simulating protein dynamics with a r...

متن کامل

Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer

Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies ...

متن کامل

An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans

Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone. To properly chaperone its clientele, Hsp90 proceeds through an ATP-dependent conformational cycle influenced by posttranslational modifications (PTMs) and assisted by a number of co-chaperone proteins. Although Hsp90 conformational changes in solution have been well-studied, regulation of these complex dynamics in cel...

متن کامل

Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs.

The molecular chaperone Hsp90 is essential for the correct folding, maturation and activation of a diverse array of client proteins, including several key constituents of oncogenic processes. Hsp90 has become a focus of cancer research, since it represents a target for direct prophylaxis against multistep malignancy. Hydrogen-exchange mass spectrometry was used to study the structural and confo...

متن کامل

Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation.

Hsp90 is an essential molecular chaperone in the eukaryotic cytosol. Its function is modulated by cochaperones and posttranslational modifications. Importantly, the phosphatase Ppt1 is a dedicated regulator of the Hsp90 chaperone system. Little is known about Ppt1-dependent phosphorylation sites and how these affect Hsp90 activity. Here, we identified the major phosphorylation sites of yeast Hs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quarterly reviews of biophysics

دوره 44 2  شماره 

صفحات  -

تاریخ انتشار 2011